El cerebro humano opera hasta en 11 dimensiones, según nuevo descubrimiento

Autor: Pijama surf
Vía PijamaSurf | Junio 13, 2017

Estudio detecta estructuras multidimensionales en el cerebro humano, en un descubrimiento que podría ser revolucionario

El cerebro humano ha sido descrito como el sistema más complejo del universo por algunos científicos, y aunque no podemos estar seguros si esto es una visión antropomórfica de la realidad, lo cierto es que sigue sorprendiéndonos. Una nueva investigación se ha volado la barda en este sentido.Un equipo de científicos liderados por Henry Markram ha descubierto que el cerebro opera hasta en 11 diferentes dimensiones, creando estructuras multidimensionales “que nunca habíamos imaginado”.

El equipo de investigadores, que se encuentra estudiando el cerebro en el afán de replicar un cerebro funcional (el programa Blue Brain), utilizó un avanzado modelo matemático para develar la arquitectura oculta del cerebro, que se hace patente cuando se procesa información. Esto se conoce como topología algebraica, y es descrita como una combinación de un microscopio con un telescopio. “La topología algebraica es como un telescopio y un microscopio al mismo tiempo, puede ampliar las redes para encontrar estructuras ocultas –los árboles en el bosque– y ver los espacios vacíos –los claros– todo al mismo tiempo”, dijo uno de los autores del estudio.

El equipo descubrió que el cerebro forma grupos de neuronas que llaman camarillas (cliques, en inglés). Dentro de estos grupos, cada neurona conecta con todas las demás y produce un objeto geométrico; entre mayor cantidad de neuronas, aumentan las dimensiones. Se llegaron a observar hasta 11 diferentes dimensiones, a las cuales han llamado cavidades; éstas son una especie de agujeros hiperdimensionales que emergen para procesar la información y luego desaparecen. Estas cavidades surgen como la geometría del procesamiento de información. Al visualizar esto, el equipo describe así lo observado:

Es como si el cerebro reaccionara a un estímulo construyendo y luego arrasando una torre de bloques multidimensionales, comenzando con barras (1D), luego tablas (2D), luego cubos (3D), y luego geometrías más complejas con 4D, 5D, etc. La progresión de la actividad a través del cerebro se asemeja a un castillo de arena multidimensional que se materializa fuera de la arena y luego se desintegra.

De acuerdo con Markram, esto podría explicar por qué el cerebro es tan difícil de entender: las matemáticas que usamos no pueden detectar estructuras multdimensionales.

Esto difícilmente podría sonar más como ciencia ficción. Pero aún hay más. Existen decenas de millones de estos objetos en sólo una pizca del cerebro, que llegan hasta siete dimensiones, y en casos menos frecuentes, estructuras que se elevan a 11 dimensiones. Así, para aquellos que están buscando otras dimensiones: que busquen dentro de sí mismos.



Imagen de portada: Reaktor

Creemos en tu trabajo y opinión, por eso lo difundimos con créditos; si no estás de acuerdo, por favor contáctanos.

Artists de Arttextum relacionados:

Glenda León, artista Arttextum
Glenda León
Máximo Corvalán-Pincheira, artista Arttextum
Máximo Corvalán-Pincheira

John Wheeler’s Participatory Universe

Autor: Marina Jones
Vía futurism | February 13, 2014

Besides his extraordinary contributions to the field of theoretical physics, Wheeler inspired many aspiring young scientists, including some of the greats of the 20th century. Among his doctoral students were Richard Feynman, a Nobel Prize laureate, with whom he coauthored the “Wheeler-Feynman absorber theory”; Hugh Everett, who proposed the many worlds interpretation; Kip Thorne, who predicted the existence of red supergiant stars with neutron-star cores; Jacob Bekenstein, who formulated black hole thermodynamics; Charles Misner, who discovered a mathematical spacetime called Misner space; Arthur Wightman, the originator of Wightman axioms; and Benjamin Schumacher, who invented the term “qubit” and is known for the “Schumacher compression”. The list could go on.

Wheeler had a reputation pushing his students into a place where logical thought would not necessarily take them. Former student Richard Feynman, to Kip Thorne, declared, “Some people think that Wheeler’s gotten crazy in his later years, but he’s always been crazy![Reference: Princeton] Wheeler was willing to make a fool of himself, to go anywhere, talk to anybody, and ask any question that would get him closer to understanding “how things are put together.” 


Wheeler believed that the real reason universities have students is to educate the professors. But to be educated by the students, a professor had to ask good questions. “You try out your questions on the students”, he wrote, “If there are questions that the students get interested in, then they start to tell you new things and keep you asking more new questions. Pretty soon you have learned a great deal.” [Reference: Cosmic Search Vol. 1 No. 4]

Wheeler had a fantastic sense of humor. Often he engaged in Koan-like expressions that puzzled and amused his listeners. He saw beauty in strangeness and actively sought it out. He declared, “If you haven’t found something strange during the day, it hasn’t been much of a day.”

Wheeler divided his own life into three parts. The first part he called “Everything is Particles.” The second part was “Everything is Fields.” And the third part, which Wheeler considered the bedrock of his physical theory, he called “Everything is Information.”


John Archilald Wheeler was born on July 9, 1911, in Jacksonville, Florida, into a family of librarians. At 16, he won a scholarship to Johns Hopkins University. He graduated five years later with a Ph.D in physics. A year later he got engaged to Janette Hegner. They stayed married for 72 years.

Source UnknownIn 1933 in an application for the National Research Council Fellowship to go to Copenhagen and work with Neils Bohr, Wheeler wrote: “I want to go to work with Neils Bohr because he sees further than any man alive.” Bohr and Wheeler published their first paper in the late 1930s, explaining nuclear fission in terms of quantum physics. They argued that the atomic nucleus, containing protons and neutrons, is like a drop of liquid, which starts vibrating and elongating into a peanut shape when a neutron emitted from another disintegrating nucleus collides with it. As a result, the peanut shaped atomic nucleus snaps into two.

In 1938 Wheeler started teaching at Princeton University. In 1941 he interrupted his academic work to join the Manhattan Project team (which included the likes of Feynman, Bohr and Albert Einstein – with Marie Curie helping lay out the blueprints) in building an atomic bomb. Wheeler considered it his duty to help with the war effort, but the atomic bomb wasn’t ready in time to end the war and save his beloved brother, who died in Italy in 1944.

After the war ended, Wheeler returned to Princeton and taught Einstein’s general theory of relativity, which at a time was not considered a “respectable” field of physics. Wheeler’s classes were exciting – one of his tricks was to write on chalkboards with both hands. He frequently took his students to Albert Einstein’s house in Princeton for discussions over a cup of tea.


Wheeler co-wrote the most influential textbook on general relativity with Charles W. Misner and Kip Thorne. It was called Gravitation. While working on mathematical extensions to the theory, Wheeler described hypothetical “tunnels” in space-time which he called “wormholes”. He was not the first scientist to think of the possibility of wormholes, or even black holes, but he established the idea. In this regard, it’s worth noting that Democritus, an ancient Greek philosopher, suggested that matter was composed of atoms, which was “mainstreamed” by John Dalton’s discovery of atoms 2000 years later. In 1784, John Mitchell, a Yorkshire clergyman, suggested that light was subject to the force of gravity long before Einstein proved it.

After the publication of the theory of General Relativity in 1916, in which Albert Einstein predicted the existence of black holes, in 1967 John Wheeler named them. Nigel Calder calls them “awesome engines of quasars and active galaxies.” We now have multiple variations of the original concept: charged black holes, rotating black holes, stationary black holes, supermassive black holes, stellar black holes, miniature black holes.


Let’s get to Wheeler’s three-part life- story, the last part he called “Everything is Information”.

In the final decades of his life, the question that intrigued Wheeler most was: “Are life and mind irrelevant to the structure of the universe, or are they central to it?” He suggested that the nature of reality was revealed by the bizarre laws of quantum mechanics. According to the quantum theory, before the observation is made, a subatomic particle exists in several states, called a superposition (or, as Wheeler called it, a ‘smoky dragon’). Once the particle is observed, it instantaneously collapses into a single position.

Wheeler suggested that reality is created by observers and that: “no phenomenon is a real phenomenon until it is an observed phenomenon.” He coined the termParticipatory Anthropic Principle (PAP) from the Greek “anthropos”, or human. He went further to suggest that “we are participants in bringing into being not only the near and here, but the far away and long ago.” [Reference: Radio Interview With Martin Redfern]

This claim was considered rather outlandish until his thought experiment, known as the “delayed-choice experiment,” was tested in a laboratory in 1984. This experiment was a variation on the famous “double-slit experiment” in which the dual nature of light was exposed (depending on how the experiment was measured and observed, the light behaved like a particle (a photon) or like a wave).

Unlike the original “double-slit experiment”, in Wheeler’s version, the method of detection was changed AFTER a photon had passed the double slit. The experiment showed that the path of the photon was not fixed until the physicists made their measurements. The results of this experiment, as well as another conducted in 2007, proved what Wheeler had always suspected – observers’ consciousness is required to bring the universe into existence. This means that a pre-life Earth would have existed in an undetermined state, and a pre-life universe could only exist retroactively.


These conclusions lead many scientists to speculate that the universe is fine-tuned for life. This is how Wheeler’s Princeton colleague, Robert Dicke, explained the existence of our universe:

“If you want an observer around, and if you want life, you need heavy elements. To make heavy elements out of hydrogen, you need thermonuclear combustion. To have thermonuclear combustion, you need a time of cooking in a star of several billion years. In order to stretch out several billion years in its time dimension, the universe, according to general relativity, must be several years across in its space dimensions. So why is the universe as big as it is? Because we are here!”

[Reference: Cosmic Search Vol. 1 No. 4]

Stephen Hawking has also noted: “The laws of science, as we know them at present, seem to have been very finely adjusted to make possible the development of life.” Fred Hoyle, in his book Intelligent Universe, compares “the chance of obtaining even a single functioning protein by a chance combination of amino acids to a star system full of blind men solving Rubik’s Cube simultaneously.”

Physicist Andrei Linde of Stanford University adds: “The universe and the observer exist as a pair. I cannot imagine a consistent theory of the universe that ignores consciousness.” [Reference: “Biocentrism: How Life and Consciousness are the Keys to Understanding the Universe“]

Wheeler, always an optimist, believed that one day we would have a clear understanding of the origin of the universe. He had “a sense of faith that it can be done.” “Faith”, he wrote, “is the number one element. It isn’t something that spreads itself uniformly. Faith is concentrated in few people at particular times and places. If you can involve young people in an atmosphere of hope and faith, then I think they’ll figure out how to get the answer.”


Wheeler died of pneumonia on April 13, 2008, at age 96. His whole life he searched for answers to philosophical questions about the origin of matter, the nature of information and the universe. “We are no longer satisfied with insights into particles, or fields of force, or geometry, or even space and time,” he wrote in 1981, “Today we demand of physics some understanding of existence itself.”  [Reference: “The Voice of Genius: Conversations with Nobel Scientists and Other Luminaries”]

Let’s hope that young scientists will continue to be encouraged by these words and will push the boundaries of human imagination beyond its limits, and maybe even find the elusive final theory – a Theory of Everything.

John Archibald Wheeler (1911-2008) was a scientist-philosopher who introduced the concept of wormholes and coined the term “black hole”. He pioneered the theory of nuclear fission with Niels Bohr and introduced the S-matrix (the scattering matrix used in quantum mechanics). Wheeler devised a concept of quantum foam; a theory of “virtual particles” popping in and out of existence in space (similarly, he conceptualized foam as the foundation of the fabric of the universe).

Imagen destacada: How It Works

We believe in your work, that's why we share it with original links; if you disagree, please contact us.

Artists de Arttextum relacionados:

Edith Medina, artista Arttextum
Edith Medina
Marcela Armas, artista Arttextum
Marcela Armas
Iván Puig, artista Arttextum
Iván Puig

How do I Bring More Prosperity Into my Life?

How do I Bring More Prosperity Into my Life?

Author: Guru Singh
Via Guru Singh | Octobre 23, 2013

Video recommended by Mick Lorusso from the USA / Italy, collaborator of Arttextum’s Replicación

Video Q&A with Guru Singh: How do I Bring More Prosperity Into my Life?

We believe in your work, that's why we share it with original links; if you disagree, please contact us.

Related Arttextum Artists:

Gilberto Esparza, artista Arttextum
Gilberto Esparza
Mick Lorusso, artista Arttextum
Mick Lorusso
Nicola Noemi Coppola, artista Arttextum
Nicola Noemi Coppola

Is the Universe Conscious?

Author: Corey S. Powell
Via NBC News| June 16, 2017

Some of the world’s most renowned scientists are questioning whether the cosmos has an inner life similar to our own.

For centuries, modern science has been shrinking the gap between humans and the rest of the universe, from Isaac Newton showing that one set of laws applies equally to falling apples and orbiting moons to Carl Sagan intoning that “we are made of star stuff” — that the atoms of our bodies were literally forged in the nuclear furnaces of other stars.

Even in that context, Gregory Matloff’s ideas are shocking. The veteran physicist at New York City College of Technology recently published a paper arguing that humans may be like the rest of the universe in substance and in spirit. A “proto-consciousness field” could extend through all of space, he argues. Stars may be thinking entities that deliberately control their paths. Put more bluntly, the entire cosmos may be self-aware.

The notion of a conscious universe sounds more like the stuff of late night TV than academic journals. Called by its formal academic name, though, “panpsychism” turns out to have prominent supporters in a variety of fields. New York University philosopher and cognitive scientist David Chalmers is a proponent. So too, in different ways, are neuroscientist Christof Koch of the Allen Institute for Brain Science, and British physicist Sir Roger Penrose, renowned for his work on gravity and black holes. The bottom line, Matloff argues, is that panpsychism is too important to ignore.

“It’s all very speculative, but it’s something we can check and either validate or falsify,” he says.

Three decades ago, Penrose introduced a key element of panpsychism with his theory that consciousness is rooted in the statistical rules of quantum physics as they apply in the microscopic spaces between neurons in the brain.

In 2006, German physicist Bernard Haisch, known both for his studies of active stars and his openness to unorthodox science, took Penrose’s idea a big step further. Haisch proposed that the quantum fields that permeate all of empty space (the so-called “quantum vacuum”) produce and transmit consciousness, which then emerges in any sufficiently complex system with energy flowing through it. And not just a brain, but potentially any physical structure. Intrigued, Matloff wondered if there was a way to take these squishy arguments and put them to an observational test.

One of the hallmarks of life is its ability to adjust its behavior in response to stimulus. Matloff began searching for astronomical objects that unexpectedly exhibit this behavior. Recently, he zeroed in on a little-studied anomaly in stellar motion known as Paranego’s Discontinuity. On average, cooler stars orbit our galaxy more quickly than do hotter ones. Most astronomers attribute the effect to interactions between stars and gas clouds throughout the galaxy. Matloff considered a different explanation. He noted that the anomaly appears in stars that are cool enough to have molecules in their atmospheres, which greatly increases their chemical complexity.

Matloff noted further that some stars appear to emit jets that point in only one direction, an unbalanced process that could cause a star to alter its motion. He wondered: Could this actually be a willful process? Is there any way to tell?

If Paranego’s Discontinuity is caused by specific conditions within the galaxy, it should vary from location to location. But if it is something intrinsic to the stars — as consciousness would be — it should be the same everywhere. Data from existing stellar catalogs seems to support the latter view, Matloff claims. Detailed results from the Gaia star-mapping space telescope, due in 2018, will provide a more stringent test.

Matloff is under no illusion that his colleagues will be convinced, but he remains upbeat: “Shouldn’t we at least be checking? Maybe we can move panpsychism from philosophy to observational astrophysics.”


While Matloff looks out to the stars to verify panpsychism, Christof Koch looks at humans. In his view, the existence of widespread, ubiquitous consciousness is strongly tied to scientists’ current understanding of the neurological origins of the mind.

“The only dominant theory we have of consciousness says that it is associated with complexity — with a system’s ability to act upon its own state and determine its own fate,” Koch says. “Theory states that it could go down to very simple systems. In principle, some purely physical systems that are not biological or organic may also be conscious.”

Koch is inspired by integrated information theory, a hot topic among modern neuroscientists, which holds that consciousness is defined by the ability of a system to be influenced by its previous state and to influence its next state.

The human brain is just an extreme example of that process, Koch explains: “We are more complex, we have more self-awareness — well, some of us do — but other systems have awareness, too. We may share this property of experience, and that is what consciousness is: the ability to experience anything, from the most mundane to the most refined religious experience.”

Like Matloff, Koch and his colleagues are actively engaged in experimental tests of these ideas. One approach is to study brain-impaired patients to see if their information responses align with biological measures of their consciousness. Another approach, further off, is to wire the brains of two mice together and see how the integrated consciousness of the animals changes as the amount of information flowing between them is increased. At some point, according to integrated information theory, the two should merge into a single, larger information system. Eventually, it should be possible to run such experiments with humans, wiring their brains together to see if a new type of consciousness emerges.

Despite their seeming similarities, Koch is dubious of Matloff’s volitional stars. What is distinctive about living things, according to his theory, is not that they are alive but that they are complex. Although the sun is vastly bigger than a bacterium, from a mathematical perspective it is also vastly simpler. Koch allows that a star may have an internal life that allows it to “feel,” but whatever that feeling is, it is much less than the feeling of being an E. coli.

On the other hand, “even systems that we don’t consider animate could have a little bit of consciousness,” Koch says. “It is part and parcel of the physical.” From this perspective, the universe may not exactly be thinking, but it still has an internal experience intimately tied to our own.


Which brings us to Roger Penrose and his theories linking consciousness and quantum mechanics. He does not overtly identify himself as a panpsychist, but his argument that self-awareness and free will begin with quantum events in the brain inevitably links our minds with the cosmos. Penrose sums up this connection beautifully in his opus “The Road to Reality”:

“The laws of physics produce complex systems, and these complex systems lead to consciousness, which then produces mathematics, which can then encode in a succinct and inspiring way the very underlying laws of physics that gave rise to it.”

Despite his towering stature as a physicist, Penrose has encountered resistance to his theory of consciousness. Oddly, his colleagues have been more accepting of the exotic, cosmic-consciousness implications of quantum mechanics. Ever since the 1920s, physicists have puzzled over the strangely privileged role of the observer in quantum theory. A particle exists in a fuzzy state of uncertainty…but only until it is observed. As soon as someone looks at it and takes its measurements, the particle seems to collapse into a definite location.

The late physicist John Wheeler concluded that the apparent oddity of quantum mechanics was built on an even grander and odder truth: that the universe as a whole festers in a state of uncertainty and snaps into clear, actual being when observed by a conscious being — that is, us.

“We are participators in bringing into being not only the near and here but the far away and long ago,” Wheeler said in 2006. He calls his interpretation the “participatory anthropic principle.” If he is correct, the universe is conscious, but in almost the opposite of the way that Matloff pictures it: Only through the acts of conscious minds does it truly exist at all.

It is hard to imagine how a scientist could put the participatory anthropic principle to an empirical test. There are no stars to monitor, and no brains to measure, to understand whether reality depends on the presence of consciousness. Even if it cannot be proven, the participatory anthropic principle extends the unifying agenda of modern science, powerfully evoking the sense of connectedness that Albert Einstein called the cosmic religious feeling.

“In my view, it is the most important function of art and science to awaken this feeling and keep it alive in those who are receptive to it,” Einstein wrote in a 1930 New York Times editorial. Explorers like Matloff are routinely dismissed as fringe thinkers, but it is hard to think of any greater expression of that feeling than continuing the quest to find out if our human minds are just tiny components of a much greater cosmic brain.

Images: NASA via Reuters

We believe in your work, that's why we share it with original links; if you disagree, please contact us.

Related Arttextum Artists

Mick Lorusso, artista Arttextum
Mick Lorusso
Ivelisse Jiménez, artista Arttextum
Ivelisse Jiménez
Gilberto Esparza, artista Arttextum
Gilberto Esparza

Watch This Guy Build a Massive Solar System in the Desert | Short Film Showcase

Authors: Wylie Overstreet & Alex Gorosh
Via YouTube | March 2, 2017


The vastness of space is almost too mind-boggling for the human brain to comprehend. In order to accurately illustrate our place in the universe, one group of friends decided to build the first scale model of the solar system in seven miles of empty desert. Watch a beautiful representation of our universe come together in light and space in this extraordinary short film.

About Short Film Showcase:
The Short Film Showcase spotlights exceptional short videos created by filmmakers from around the web and selected by National Geographic editors. We look for work that affirms National Geographic’s belief in the power of science, exploration, and storytelling to change the world. The filmmakers created the content presented, and the opinions expressed are their own, not those of National Geographic Partners. Email SFS@ngs.org to submit a video for consideration. See more from National Geographic’s Short Film Showcase at http://documentary.com

About National Geographic:
National Geographic is the world’s premium destination for science, exploration, and adventure. Through their world-class scientists, photographers, journalists, and filmmakers, Nat Geo gets you closer to the stories that matter and past the edge of what’s possible.


We believe in your work, that's why we share it with original links; if you disagree, please contact us.

Related Arttextum Artists:

Glenda León, artista Arttextum
Glenda León
Gilberto Esparza, artista Arttextum
Gilberto Esparza
Marcela Armas, artista Arttextum
Marcela Armas