El científico más innovador del que jamás oíste hablar

Autor: TED-Ed
Vía YouTube | Octubre 1, 2013

El geólogo danés del siglo XVII, Nicolás Sténon, se ganó la vida a temprana edad, estudiando cadáveres y estableciendo conexiones anatómicas entre las especies.


Sténon hizo aportes descomunales en el campo de la geología, influyendo en Charles Lyell, James Hutton y Charles Darwin. Addison Anderson relata el legado poco conocido de Sténon y alaba su insistencia en el empirismo sobre la teoría ciega.

Lección de Addison Anderson, animación de Anton Bogaty.

Creemos en tu trabajo y opinión, por eso lo difundimos con créditos; si no estás de acuerdo, por favor contáctanos.

Artistas de Arttextum relacionados:

Gilberto Esparza, artista Arttextum
Gilberto Esparza
Iván Puig, artista Arttextum
Iván Puig
Marcela Armas, artista Arttextum
Marcela Armas

Is the Universe Conscious?

Author: Corey S. Powell
Via NBC News| June 16, 2017

Some of the world’s most renowned scientists are questioning whether the cosmos has an inner life similar to our own.

For centuries, modern science has been shrinking the gap between humans and the rest of the universe, from Isaac Newton showing that one set of laws applies equally to falling apples and orbiting moons to Carl Sagan intoning that “we are made of star stuff” — that the atoms of our bodies were literally forged in the nuclear furnaces of other stars.

Even in that context, Gregory Matloff’s ideas are shocking. The veteran physicist at New York City College of Technology recently published a paper arguing that humans may be like the rest of the universe in substance and in spirit. A “proto-consciousness field” could extend through all of space, he argues. Stars may be thinking entities that deliberately control their paths. Put more bluntly, the entire cosmos may be self-aware.

The notion of a conscious universe sounds more like the stuff of late night TV than academic journals. Called by its formal academic name, though, “panpsychism” turns out to have prominent supporters in a variety of fields. New York University philosopher and cognitive scientist David Chalmers is a proponent. So too, in different ways, are neuroscientist Christof Koch of the Allen Institute for Brain Science, and British physicist Sir Roger Penrose, renowned for his work on gravity and black holes. The bottom line, Matloff argues, is that panpsychism is too important to ignore.

“It’s all very speculative, but it’s something we can check and either validate or falsify,” he says.

Three decades ago, Penrose introduced a key element of panpsychism with his theory that consciousness is rooted in the statistical rules of quantum physics as they apply in the microscopic spaces between neurons in the brain.

In 2006, German physicist Bernard Haisch, known both for his studies of active stars and his openness to unorthodox science, took Penrose’s idea a big step further. Haisch proposed that the quantum fields that permeate all of empty space (the so-called “quantum vacuum”) produce and transmit consciousness, which then emerges in any sufficiently complex system with energy flowing through it. And not just a brain, but potentially any physical structure. Intrigued, Matloff wondered if there was a way to take these squishy arguments and put them to an observational test.

One of the hallmarks of life is its ability to adjust its behavior in response to stimulus. Matloff began searching for astronomical objects that unexpectedly exhibit this behavior. Recently, he zeroed in on a little-studied anomaly in stellar motion known as Paranego’s Discontinuity. On average, cooler stars orbit our galaxy more quickly than do hotter ones. Most astronomers attribute the effect to interactions between stars and gas clouds throughout the galaxy. Matloff considered a different explanation. He noted that the anomaly appears in stars that are cool enough to have molecules in their atmospheres, which greatly increases their chemical complexity.

Matloff noted further that some stars appear to emit jets that point in only one direction, an unbalanced process that could cause a star to alter its motion. He wondered: Could this actually be a willful process? Is there any way to tell?

If Paranego’s Discontinuity is caused by specific conditions within the galaxy, it should vary from location to location. But if it is something intrinsic to the stars — as consciousness would be — it should be the same everywhere. Data from existing stellar catalogs seems to support the latter view, Matloff claims. Detailed results from the Gaia star-mapping space telescope, due in 2018, will provide a more stringent test.

Matloff is under no illusion that his colleagues will be convinced, but he remains upbeat: “Shouldn’t we at least be checking? Maybe we can move panpsychism from philosophy to observational astrophysics.”


While Matloff looks out to the stars to verify panpsychism, Christof Koch looks at humans. In his view, the existence of widespread, ubiquitous consciousness is strongly tied to scientists’ current understanding of the neurological origins of the mind.

“The only dominant theory we have of consciousness says that it is associated with complexity — with a system’s ability to act upon its own state and determine its own fate,” Koch says. “Theory states that it could go down to very simple systems. In principle, some purely physical systems that are not biological or organic may also be conscious.”

Koch is inspired by integrated information theory, a hot topic among modern neuroscientists, which holds that consciousness is defined by the ability of a system to be influenced by its previous state and to influence its next state.

The human brain is just an extreme example of that process, Koch explains: “We are more complex, we have more self-awareness — well, some of us do — but other systems have awareness, too. We may share this property of experience, and that is what consciousness is: the ability to experience anything, from the most mundane to the most refined religious experience.”

Like Matloff, Koch and his colleagues are actively engaged in experimental tests of these ideas. One approach is to study brain-impaired patients to see if their information responses align with biological measures of their consciousness. Another approach, further off, is to wire the brains of two mice together and see how the integrated consciousness of the animals changes as the amount of information flowing between them is increased. At some point, according to integrated information theory, the two should merge into a single, larger information system. Eventually, it should be possible to run such experiments with humans, wiring their brains together to see if a new type of consciousness emerges.

Despite their seeming similarities, Koch is dubious of Matloff’s volitional stars. What is distinctive about living things, according to his theory, is not that they are alive but that they are complex. Although the sun is vastly bigger than a bacterium, from a mathematical perspective it is also vastly simpler. Koch allows that a star may have an internal life that allows it to “feel,” but whatever that feeling is, it is much less than the feeling of being an E. coli.

On the other hand, “even systems that we don’t consider animate could have a little bit of consciousness,” Koch says. “It is part and parcel of the physical.” From this perspective, the universe may not exactly be thinking, but it still has an internal experience intimately tied to our own.


Which brings us to Roger Penrose and his theories linking consciousness and quantum mechanics. He does not overtly identify himself as a panpsychist, but his argument that self-awareness and free will begin with quantum events in the brain inevitably links our minds with the cosmos. Penrose sums up this connection beautifully in his opus “The Road to Reality”:

“The laws of physics produce complex systems, and these complex systems lead to consciousness, which then produces mathematics, which can then encode in a succinct and inspiring way the very underlying laws of physics that gave rise to it.”

Despite his towering stature as a physicist, Penrose has encountered resistance to his theory of consciousness. Oddly, his colleagues have been more accepting of the exotic, cosmic-consciousness implications of quantum mechanics. Ever since the 1920s, physicists have puzzled over the strangely privileged role of the observer in quantum theory. A particle exists in a fuzzy state of uncertainty…but only until it is observed. As soon as someone looks at it and takes its measurements, the particle seems to collapse into a definite location.

The late physicist John Wheeler concluded that the apparent oddity of quantum mechanics was built on an even grander and odder truth: that the universe as a whole festers in a state of uncertainty and snaps into clear, actual being when observed by a conscious being — that is, us.

“We are participators in bringing into being not only the near and here but the far away and long ago,” Wheeler said in 2006. He calls his interpretation the “participatory anthropic principle.” If he is correct, the universe is conscious, but in almost the opposite of the way that Matloff pictures it: Only through the acts of conscious minds does it truly exist at all.

It is hard to imagine how a scientist could put the participatory anthropic principle to an empirical test. There are no stars to monitor, and no brains to measure, to understand whether reality depends on the presence of consciousness. Even if it cannot be proven, the participatory anthropic principle extends the unifying agenda of modern science, powerfully evoking the sense of connectedness that Albert Einstein called the cosmic religious feeling.

“In my view, it is the most important function of art and science to awaken this feeling and keep it alive in those who are receptive to it,” Einstein wrote in a 1930 New York Times editorial. Explorers like Matloff are routinely dismissed as fringe thinkers, but it is hard to think of any greater expression of that feeling than continuing the quest to find out if our human minds are just tiny components of a much greater cosmic brain.

Images: NASA via Reuters

We believe in your work, that's why we share it with original links; if you disagree, please contact us.

Related Arttextum Artists

Mick Lorusso, artista Arttextum
Mick Lorusso
Ivelisse Jiménez, artista Arttextum
Ivelisse Jiménez
Gilberto Esparza, artista Arttextum
Gilberto Esparza

Investigador mexicano crea nuevo cemento con capacidad para generar luz

Autor: Nistela Villaseñor
Vía Conacyt Prensa | Octubre 20, 2015


La necesidad de contar con nuevas alternativas de energía, sin costo por mantenimiento y con bajo impacto ambiental, en las que el cemento sirva como adhesivo o cementante capaz de ofrecer otras funciones como la generación de luminiscencia, dio pie a la creación de un cemento emisor de luz diseñado por José Carlos Rubio Ávalos, investigador de la Sección de Innovación Tecnológica en Materiales de la Facultad de Ingeniería Civil de la Universidad Michoacana de San Nicolás de Hidalgo (UMSNH).

Rubio Ávalos comentó en entrevista a la Agencia Informativa Conacyt que a partir de esta innovación, empresas europeas están tomando la base y referencia científica y tecnológica para nuevos desarrollos en la misma dirección de energía, que además han empezado a patentar y comercializar principalmente en Europa.

El cemento convencional, dijo el investigador, generalmente pasa desapercibido aunque forma parte del entorno. Sus ventas son indicadores de la economía de un país, está en todas partes del mundo y es considerado el material más utilizado por el ser humano después del agua. México es uno de los principales productores mundiales por su contribución de cemento para la construcción de casas, edificios, puentes, carreteras, hospitales, hoteles, presas para agua, etcétera.

Rubio Ávalos es doctor en Ciencias con especialidad en Materiales por el Centro de Investigación y de Estudios Avanzados (Cinvestav) del Instituto Politécnico Nacional (IPN) unidad Querétaro y es miembro nivel I del Sistema Nacional de Investigadores (SNI).

Microestructura de un cemento Portland (comercial) que produce cuerpos opacos y la luz no puede ser transmitida a su interior.
Microestructura de un cemento Portland (comercial) que produce cuerpos opacos y la luz no puede ser transmitida a su interior.

Agencia Informativa Conacyt (AIC): ¿Cómo surge la creación del cemento emisor de luz?

José Carlos Rubio Ávalos (JCRA): El cemento comercial técnicamente se conoce como cemento Portland, está constituido básicamente por un gel de silicato de calcio hidratado, cristales de cal y agujas de sulfoaluminatos cálcicos dispersas como redes. Lo anterior genera que los cuerpos o solidos elaborados con este tipo de cemento sean opacos o que la luz no pueda ser transmitida al interior de la pasta de cemento.

Por otro lado, existen en el comercio plásticos fosforescentes, los encontramos en relojes, señalamientos viales y de seguridad, juguetes, artículos de decoración, etcétera. La fosforescencia o fotoluminiscencia es un fenómeno físico que algunos materiales tienen y que básicamente sigue las etapas siguientes: El material absorbe la energía o luz (solar o artificial); de dicho espectro de luz solo nos interesa la luz ultravioleta, esta provoca en los pequeños cristales que se embeben en los plásticos que sus electrones tengan un cambio en su nivel energético; posteriormente, una vez retirada la fuente de energía (luz), los electrones vuelven a su estado de menor energía, en ese salto se libera la energía acumulada o absorbida en forma de fotones o luz que, dependiendo de la composición química de esos cristales, puede ser azul, amarilla, verde, naranja, etcétera.

Lamentablemente, la misma fuente de energía (rayos ultravioleta) que produce la fosforescencia o fotoluminiscencia, también destruye y daña los plásticos rompiendo o promoviendo la ruptura de las cadenas de polímeros que constituyen esos plásticos. Obviamente se han usado por años los polímeros orgánicos o plásticos sintéticos debido a que para que exista este fenómeno de fosforescencia se requiere que la luz sea transmitida al interior del sólido y llegue a los cristales y, posteriormente, la luz producida por los cristales sea emitida al exterior, y por ello las resinas transparentes o semitransparentes son las utilizadas comercialmente y su durabilidad está limitada a la exposición o radiación solar y la composición de las mismas.

Por lo tanto, si uno piensa en inventar un cemento fosforescente o cemento emisor de luz, tiene que enfrentar los retos de hacer un cambio en la microestructura del cemento mismo, para que permita el paso de la luz a su interior y, posteriormente, la luz generada en el interior del cemento salga al exterior. El reto mayor es que no se deben utilizar polímeros sintéticos o resinas orgánicas porque debemos crear nuevos materiales y nuevos productos sin afectar el medio ambiente y, por otro lado, debe resistir la radiación ultravioleta sin deteriorarse. La solución fue encontrada en la química inorgánica: producir un cemento con propiedades ópticas diferentes permitiendo la transmisión y reflexión de la luz.

AIC: ¿Específicamente cómo se obtiene el cemento emisor de luz?

JCRA: Se obtiene por un proceso de policondensación, es como fundir azúcar y obtener un caramelo, pero de materias primas como sílice (arena de río), desechos industriales (industria acerera, por ejemplo), álcalis (hidróxidos de sodio o potasio) y agua. El proceso se realiza a temperatura ambiente y no requiere hornos o altos consumos de energía y, por lo tanto, la contaminación por su elaboración es baja comparada con el cemento Portland tradicional y los plásticos sintéticos.

El mayor logro como científicos mexicanos fue nuestra aportación al mundo de que los cementos geopoliméricos, en los que se basa la tecnología, pueden ser utilizados como materiales funcionales y no solo como adhesivos. Actualmente contamos con otros productos patentados que amplían la información, pero no se han realizado publicaciones correspondientes por nuestro interés de proteger los resultados de investigación como lo hemos venido realizando hasta el día de hoy.

La originalidad de la investigación e innovación a nivel internacional dio lugar a que el Instituto Mexicano de la Propiedad Industrial (IMPI) otorgara la patente de invención a la Universidad Michoacana de San Nicolás de Hidalgo, la cual está disponible para su transferencia y comercialización para las empresas del sector interesadas.

AIC: ¿Para qué sirve un cemento con estas características?

JCRA: Las aplicaciones son muy amplias, dentro de las que más destacan están el mercado arquitectónico: fachadas, piscinas, baños, cocinas, estacionamientos, etcétera; en la seguridad vial y señalamientos; en el sector de generación de energía, como plataformas petroleras; y en cualquier lugar que se desee iluminar o marcar espacios que no tengan acceso a instalaciones eléctricas, dado que no requiere un sistema de distribución eléctrica y se recarga solo con la luz. La durabilidad del cemento emisor de luz se estima mayor a los 100 años por su naturaleza inorgánica, y es fácilmente reciclable por sus componentes materiales.

AIC: ¿Cuál es el proceso por el que el cemento emite la luz?

JCRA: Primero cargándose con luz natural o artificial y posteriormente, en la oscuridad, emitiendo esa luz. La emisión de luz puede llegar a las 12 horas (toda la noche) cargado el cemento previamente por un periodo similar (durante el día).

AIC: ¿Quiénes serán los principales beneficiarios de esta nueva tecnología en materiales?

JCRA: El cemento emisor de luz puede ser útil para cualquier sector que desee utilizarlo para generar espacios iluminados con energía totalmente sustentable y sin costos de mantenimiento o generación una vez que sea instalado.

AIC: ¿Qué institución financió el proyecto y quiénes participaron en él?

JCRA: La investigación fue realizada con financiamiento de la UMSNH a través de la Coordinación de la Investigación Científica, con una inversión aproximada de 50 mil pesos. El equipo de trabajo fue coordinado por su servidor, en colaboración con la doctora Elia Mercedes Alonso Guzmán, el maestro Wilfrido Martínez Molina y el doctor Fernando Velasco Ávalos.

Imágenes: ArchDaily y Conacyt Prensa

Creemos en tu trabajo y opinión, por eso lo difundimos con créditos; si no estás de acuerdo, por favor contáctanos.

Artistas de Arttextum relacionados:

Gilberto Esparza, artista Arttextum
Gilberto Esparza
Fernando Caridi, artista Arttextum
Fernando Caridi
Óscar Moreno Escárraga, artista Arttextum
Óscar Moreno Escárraga

The scientist who gave up his job to fold origami

Author: Faena Aleph
Via Faena | June 1, 2015


Dr. Robert J. Lang has revolutionized the wonderful world of origami to be able to make anything that enters his imagination.

Origami is pleasantly nostalgic. One remembers, perhaps, when one was a child and made their first bird that looked like a crane but had few features in common with the real bird. It could be described as one of the first meditative activities that we carried out voluntarily and full of expectation. The minute concentrations we put into each fold of paper blocked out anything else that happened around us. And that, for a child, is no small feat. But the obsession with the possibilities of a sheet of paper have gone far beyond a healthy and aesthetic educational entertainment; to begin with, they led one scientist to leave his job and dedicate himself full-time to folding paper and, in doing so, he revolutionized the world and the limits of origami.

That man is Dr. Robert J. Lang, an electronic engineer who, while he worked for a fiber optic company (JDS Uniphase) in the 1970s, invented the origami Jimmy Carter, Darth Vader, a monk and an inflatable rabbit, but whose real passion were insects (albeit in those days, together with crustaceans, they were impossible to create in origami as nobody had solved the problem as to how to fold paper into figures with robust bodies and thin limbs).

Dr. Lang’s obsession and talent were such that he began to investigate mathematical equations that would allow him to create figures beyond thirty folds, at the time the maximum number of folds that the Japanese art of origami had reached. By the end of the 1970s origami had changed so much thanks to Lang (insects were now possible as well as all kinds of complex figures) that he gave up his job to carry on experimenting with its possibilities.



The Japanese could not believe that a Western man could be an origami expert, and those who knew him as a scientist were amazed to find out that their colleague was one of the world’s most famous origami artists. But Lang, who had received his first book of origami at the age of six, was so infatuated with the possibility of creating three-dimensional creatures, almost magically, that he could do nothing else but dedicate himself to that.

In Japan, the art of origami has been practiced as a recreation for at least 400 years under one beautiful and simple principle: the sheet of paper is the essence, no matter what it becomes, there is never more or less paper; the same paper remains. What Dr. Lang added to that world of figures, and always respecting the rule of not cutting the paper, were mathematical equations. More precisely, the elegance of mathematical equations. And thanks to that, naturalism found its most beautiful three-dimensional accompaniment.



In 2003 Lang published the book Origami Design Secrets and now, as well as designing sets for films and commercials, Lang has various jobs as a scientific designer. He has designed medical instruments and space telescopes and he made it possible for a cellular antenna to fit inside a mobile telephone.

Lang believes there is still much to be done with origami. And while his main activity is refining his beloved insects, its scientific application knows no limits in practice. Origami is no longer just an art, but is also mathematics, geometry, physics, philosophy and religion, all folded into a beautiful figure.

Images: courtesy of Robert Lang and FunCheap

We believe in your work, that's why we share it with original links; if you disagree, please contact us.

Related Arttextum Artists:

María Ezcurra, artista Arttextum
María Ezcurra
Rita Ponce de León, artista Arttextum
Rita Ponce de León
Gilberto Esparza, artista Arttextum
Gilberto Esparza